Boosting the Efficiency of Large-Scale Entity Resolution with Enhanced Meta-Blocking
نویسندگان
چکیده
Entity Resolution constitutes a quadratic task that typically scales to large entity collections through blocking. The resulting blocks can be restructured by Meta-blocking to raise precision at a limited cost in recall. At the core of this procedure lies the blocking graph, where the nodes correspond to entities and the edges connect the comparable pairs. There are several configurations for Meta-blocking, but no hints on best practices. In general, the node-centric approaches are more robust and suitable for a series of applications, but suffer from low precision, due to the large number of unnecessary comparisons they retain. In this work, we present three novel methods for nodecentric Meta-blocking that significantly improve precision. We also introduce a pre-processing method that restricts the size of the blocking graph by removing a large number of noisy edges. As a result, it reduces the overhead time of Meta-blocking by 2 to 5 times, while increasing precision by up to an order of magnitude for a minor cost in recall. The same technique can be applied as graph-free Meta-blocking, enabling for the first time Entity Resolution over very large datasets even on commodity hardware. We evaluate our approaches through an extensive experimental study over 19 voluminous, established datasets. The outcomes indicate best practices for the configuration of Meta-blocking and verify that our techniques reduce the resolution time of state-ofthe-art methods by up to an order of magnitude.
منابع مشابه
Parallel meta-blocking for scaling entity resolution over big heterogeneous data
Entity resolution constitutes a crucial task for many applications, but has an inherently quadratic complexity. In order to enable entity resolution to scale to large volumes of data, blocking is typically employed: it clusters similar entities into (overlapping) blocks so that it suffices to perform comparisons only within each block. To further increase efficiency, Meta-blocking is being used...
متن کاملScaling Entity Resolution to Large, Heterogeneous Data with Enhanced Meta-blocking
Entity Resolution constitutes a quadratic task that typically scales to large entity collections through blocking. The resulting blocks can be restructured by Meta-blocking in order to significantly increase precision at a limited cost in recall. Yet, its processing can be time-consuming, while its precision remains poor for configurations with high recall. In this work, we propose new meta-blo...
متن کاملSupervised Meta-blocking
Entity Resolution matches mentions of the same entity. Being an expensive task for large data, its performance can be improved by blocking, i.e., grouping similar entities and comparing only entities in the same group. Blocking improves the run-time of Entity Resolution, but it still involves unnecessary comparisons that limit its performance. Meta-blocking is the process of restructuring a blo...
متن کاملA three-stage assembly flow shop scheduling problem with blocking and sequence-dependent set up times
This paper considers a three-stage assembly flowshop scheduling problem with sequence-dependent setup < /div> times at the first stage and blocking times between each stage in such a way that the weighted mean completion time and makespan are minimized. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time using traditiona...
متن کاملBLAST: a Loosely Schema-aware Meta-blocking Approach for Entity Resolution
Identifying records that refer to the same entity is a fundamental step for data integration. Since it is prohibitively expensive to compare every pair of records, blocking techniques are typically employed to reduce the complexity of this task. These techniques partition records into blocks and limit the comparison to records co-occurring in a block. Generally, to deal with highly heterogeneou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Big Data Research
دوره 6 شماره
صفحات -
تاریخ انتشار 2016